01
2021-04
热处理厂分类和硬度的检测方法
  1、热处理工件的硬度使用硬度计检测。PHR系列便携式表面洛氏硬度计十分适用于检测表面热处理工件的硬度,可以测试有效化深度超过0.1mm的各种表面热处理工件。操作简单、使用方便、价格较低,可直接读取硬度值。  2、表面热处理分为两大类,一类是表面淬火回火热处理,另一类是化学热处理,其硬度检验方法如下:化学热处理是使工件表面渗入一种或几种化学元素的原子,从而改变工件表面的化学成分、组织和性能。经淬火和低温回火后,工件表面具有高的硬度、耐磨性和接触疲劳强度,而工件的芯部又具有高的强韧性。  3、化学热处理工件的主要技术参数是硬化层深度和表面硬度。硬化层深度还是要用维氏硬度计来检测。检测从工件表面到硬度降到50HRC那一点的距离。这就是有效硬化深度化学热处理工件的表面硬度检测与表面淬火热处理工件的硬度检测相近,都可以用维氏硬度计、表面洛氏硬度计或洛氏硬度计来检测,只是渗氮厚的厚度较薄,一般不大于0.7mm,这时就不能再采用洛氏硬度计了。零件如果局部硬度要求较高,可用感应加热等方式进行局部淬火热处理,这样的零件通常要在图纸上标出局部淬火热处理的位置和局部硬度值。零件的硬度检测要在指定区域内进行。硬度检测仪器可采用洛氏硬度计,测试HRC硬度值,如热处理硬化层较浅,可采用表面洛氏硬度计,测试HRN硬度值。  4、表面淬火回火热处理通常用感应加热或火焰加热的方式进行。主要技术参数是表面硬度、局部硬度和有效硬化层深度。硬度检测可采用维氏硬度计,也可采用洛氏或表面洛氏硬度计。试验力(标尺)的选择与有效硬化层深度和工件表面硬度有关。这里涉及到三种硬度计。维氏硬度计是测试热处理工件表面硬度的重要手段,它可选用0.5~100kg的试验力,测试薄至0.05mm厚的表面硬化层,它的精度是最高的,可分辨出工件表面硬度的微小差别。另外,有效硬化层深度也要由维氏硬度计来检测,所以,对于进行表面热处理加工或大量使用表面热处理工件的单位,配备一台维氏硬度计是有必要的。  5、表面洛氏硬度计也是十分适于测试表面淬火工件硬度的,表面洛氏硬度计有三种标尺可以选择。可以测试有效硬化深度超过0.1mm的各种表面硬化工件。尽管表面洛氏硬度计的精度没有维氏硬度计高,但是作为热处理工厂质量管理和合格检查的检测手段,已经能够满足要求。况且它还具有操作简单、使用方便、价格较低,测量迅速、可直接读取硬度值等特点,利用表面洛氏硬度计可对成批的表面热处理工件进行快速无损的逐件检测。这一点对于金属加工和机械制造工厂具有重要意义。当表面热处理硬化层较厚时,也可采用洛氏硬度计。当硬化层厚度在0.4~0.8mm时,可采用HRA标尺,当硬化层厚度超过0.8mm时,可采用HRC标尺。  6、维氏、洛氏和表面洛氏三种硬度值可以方便地进行相互换算,转换成标准、图纸或用户需要的硬度值。相应的换算表在国际标准ISO、美国标准ASTM和中国标准GB/T中都已给出。
01
2021-04
真空氮化处理的一些介绍
  真空氮化处理是热处理中较为常见的一种处理方法。  传统合金钢中的铝,铬,钒和钼元素非常有助于氮化。当这些元素与初级氮原子接触时,这些元素在氮化温度下形成稳定的氮化物。特别地,钼不仅用作氮化物形成元素,而且还用作当氮化温度降低时发生的脆性。                          其他合金钢中的元素,如镍,铜,硅和锰,对氮化特性的贡献不大。一般而言,如果钢含有一种或多种氮化物形成元素,则氮化的效果更好。  其中,铝是强的氮化物元素,以0.85-1.5%铝的氮化效果好的。对于含铬的铬钢,如果含量足够,可以获得良好的结果。然而,无合金碳钢由于其易碎的氮化层和易剥离而不适用于氮化钢
01
2021-04
真空氮化处理原理
​   真空氮化处理原理​   ​真空热处理去应力回火真空退火​   ​气体氮化一般使用无水氨气(或氨+氢,或氨+氮)作为供氮介质。整个氮化过程可分三个阶段。​   ​(1)氨的分解​   ​氨是一种很不稳定的气体,在一定条件下易于分解。它的分解率随温度的升高而增加,在400~600℃温度范围内,它的自然分解率可趋向​   全部分解,其分解反应如下:​   ​2NH3=====2[N]+6[H]​   ​氨气中分解出的活性氮原子是新生态的氮原子,具有很大的化学活性,部分被工件表面吸收,然后从表面向内部扩散,剩余的[N]很快结​ ​   ​合成分子态的N2与H2等一起从废气中排出,所以氨分解式实际上是:​   ​​2NH3======2[N]+6H=====3H2+N2​   ​​为了使氮化作用继续不断地进行下去,需要连续地输入氨气,不断地产生活性氮原子​   ​​(2)钢件表面吸收氮原子​   ​​活性氮原子被钢件表面中吸收后,深入铁素体中形成含氮量较高的铁素体,过饱和后又形成氮化物。​   ​​(3)扩散​   ​​钢件表面吸收氮原子以后,在表面和里层存在着氮浓度梯度,促使氮原子从表面向里扩散,形成一定厚度的氮化层。​   ​​在氮化温度下,吸附层中的活性氮原子向金属晶格内部移动,留下的空隙又迅速地被吸附层的氮原子所填满,因而始终保持金属表面上有活性氮原子连续渗入。因此,扩散过程如下。​   ​​①向炉内不断输入含氮的气体;​   ​​氨分子向金属表面迁移;​   ​​氨分子被金属表面吸附;​   ​​氨分在相界面上不断分解,形成氮原子和氢原子;​   ​​吸收剩余的活性原子复合成分子,不断从炉内排出;​   ​​表面吸附的氮原子溶解于γ-Fe、α-Fe中。​   ​​②氮原子由金属表面向内中扩散,并产生一定的浓度梯度。​   ​​③当氮超过在α-Fe中的溶解度后,表层开始形成氮化物。​   ​​④氮化物沿金属表面的垂直方向和平行方向长大。​   ​​⑤表面依次形成γ相和ε相。​   ​​⑥氮化层不断增厚。​   ​​⑦氮从氮化物层向金属内部扩散。​   ​​影响以上基本过得的因素很多,如温度、时间、压力、介质成分(或氮势)以及零件钢材成分和组织等。气体氮化工艺就是要合理地控制这些影响因素,获得满意的氮化层。
01
2021-04
超深冷处理设备的工艺步骤
   超深冷处理技术,处理工艺是决定处理效果的关键。深冷处理工艺的关键影响因素主要包括:深冷处理方式、升降温速度、回火前处理或者回火后处理、保温时间、深冷次数等。   1、超深冷处理方式   可分为液体法和气体法两种。液体法是将工件直接放入液氮中,处理温度为-150℃。该方法的缺点是热冲击性大,有时甚至造成工件开裂。气体法是通过液氮的汽化潜热和低温氮气吸热来制冷,处理温度达-196℃,处理效果较好。   2、升降温速度   目前,对深冷升、降温速度主要有两种观点。一种观点认为深冷的升降温速度不能太快,即不赞成将工件直接浸入液氮中,因为激冷将导致工件内部的应力增大,易造成工件的变形或开裂。如日本的“深冷急热法”,工件淬火后不马上进行冷处理,而是先放入水浴,再放入处理槽中在-80℃或-180℃下进行冷处理,保温一段时间后立即放人60C热水浴中,使试样快速回温以减小内应力,然后选用不同温度回火1h。   另一种观点则认为应快速冷却或升温,这样会使奥氏体更易转变为马氏体,且直浸冷却速率比油淬慢,不易引起材料的变形或开裂。如前苏联的“冲击法”,将被处理的工件直接快速地放入液氮中,深冷到所需的温度后保温5~30min,然后取出放在室温下,待其恢复到室温后,再在200~500℃的油中回火1h。该方法明显地提高了高速钢刀具的使用寿命。 
01
2021-04
超深冷处理材料改性的一种新技术与新工艺
超深冷处理技术是材料在热处理后,唯一可使用在已经成型的工具、刀具、零件的处理工艺,可以稳定材料的精密尺寸,提高材料的耐磨性能,恢复材料的机械性能。超深冷处理技术对材料的处理不仅限于材料的表面处理,而且渗透于材料内部组织,体现的是整体效应,特别是对切削工具的重磨,不影响组织结构,可以反复使用,其可重复使用性能明显优于涂层技术。超深冷处理处理技术同时对工件能有效的减少淬火应力和增强尺寸稳定的性能。传统产业竞争力在面临工业结构的转型与升级,必须做出正确的改变。产品品质的保证将由竞争条件转变为生存条件。工业产品的效能的提高,是工业人士所面临的课题。然而金属材料的基础工程显得更加重要,热处理的基础工作让工业产品的品质未臻完善,虽然热处理赋予金属材料生命,但是未给予寿命与效能。完整的基础的工程除前面的热处理外,尚包括后续的金属超深冷处理处理,才是保证产品品质的基础工作。金属超深冷处理处理(DeepCryogenicTreatment)将是金属产品品质的唯一选择。
01
2021-04
超深冷处理应用行业包括哪些?
超深冷处理应用行业包括:精密冲压模具、纳米材料、精密塑胶模具、切削刀具、滚齿刀,铝合金材料、硬质合金切削刀具/夹具、粉末冶金模具等。超深冷处理处理针对高速钢在超深冷处理处理过程中,金属中大量残余奥氏体转变为马氏体,将过饱和的亚稳定马氏体降低其饱和度,降低微观应力,析出弥散,而且析出弥散的超细小碳化物在材料塑性变形时有效的阻碍错位运动,从而有效的强化了基体组织。由于超微细碳化物颗粒均匀分布在马氏体上,有效的强化晶界,从而改善了高速钢的性能,使抗冲击韧性、红硬性、耐磨性都有大幅提升。超深冷处理处理针对硬质合金在超深冷处理处理过程中,有效的将硬质合金中的内部应力的有效调整,减少钴产生的拉伸应力,增强产生微裂纹的阻力,有效的减低微裂纹的产生,从而提高了抗疲劳强度、韧性,同时增强了钴对碳化钨的结合性能,有效降低碳化物的剥离,有效提高了耐磨性能。不会发生组织变态的硬质合金经超深冷处理处理(DeepCryogenicTreatment)后可以显著的增加材料工件的使用寿命,确切的是硬质合金的组织会更加致密,同时促进时效(aging),增加塑性变形的阻抗,单次使用除增加30%到5倍的寿命外,积碳层从原来0.02-0.05mm提升至0.08-0.13mm,可显著降低再研磨量。超深冷处理处理针对铝合金把硬铝(duralumin)固溶处理后,再进行超深冷处理处理(DeepCryogenicTreatment),由于可以促使时效及大幅度消除残余应力,因而可以提升整体机械性质。目前在国外的机械工业中运用超深冷处理处理提升铝合金效能有很多案例,大部分经过超深冷处理处理的材料有7075、6061等。尤其是铝合金制的运用在高速运转的机械零件经超深冷处理处理后的使用寿命更为显著。
东莞市宏烽真空热处理有限公司 版权所有

技术支持:东莞网站建设​